Foldable Robotics Timeline

1992-1995

( Citation: , & al., , , & (). Microfabricated hinges. Sensors and Actuators A: Physical, 33(3). 249–256. https://doi.org/10.1016/0924-4247(92)80172-Y )

( Citation: , & al., , & (). Microelectromechanical Components For Articulated Microrobots. IEEE. https://doi.org/10.1109/SENSOR.1995.721817 )

( Citation: , & al., , & (). Automated assembly of flip-up micromirrors. Sensors and Actuators A: Physical, 66(1-3). 292–298. https://doi.org/10.1016/S0924-4247(97)01719-6 )

1998-2001

( Citation: , & al., , , , & (). Prototyping millirobots using dextrous microassembly and folding. Symposium on Microrobotics ASME Int. Mechanical Engineering Cong. and Exp. 1–8. )

( Citation: , & al., , , , , & (). Wing transmission for a micromechanical flying insect. IEEE. https://doi.org/10.1109/ROBOT.2000.844811 )

( Citation: , & al., , , , & (). Towards flapping wing control for a micromechanical flying insect. IEEE. https://doi.org/10.1109/ROBOT.2001.933225 )

2003-2004

( Citation: , & al., , & (). Semi-automated micro assembly for rapid prototyping of a one DOF surgical wrist. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), 2(October). https://doi.org/10.1109/IROS.2003.1248918 )

( Citation: , & al., , , & (). Microrobotics using composite materials: the micromechanical flying insect thorax. IEEE. https://doi.org/10.1109/ROBOT.2003.1241863 )

( Citation: , (). Kinematics of 3D Folding Structures for Nanostructured Origami. Retrieved from )

2005-2006

( Citation: & , & (). Flexure design rules for carbon fiber microrobotic mechanisms. IEEE. https://doi.org/10.1109/ROBOT.2005.1570339 )

( Citation: , & al., , & (). Optimal energy density piezoelectric bending actuators. Sensors and Actuators A: Physical, 119(2). 476–488. https://doi.org/10.1016/j.sna.2004.10.024 )

( Citation: , & al., , , , , & (). Towards a 3g crawling robot through the integration of microrobot technologies. Proceedings - IEEE International Conference on Robotics and Automation, 2006. 296–302. https://doi.org/10.1109/ROBOT.2006.1641727 )

2008

( Citation: & , & (). Fast scale prototyping for folded millirobots. 2008 IEEE International Conference on Robotics and Automation. 1777–1778. https://doi.org/10.1109/ROBOT.2008.4543462 )

( Citation: , (). The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Transactions on Robotics, 24(2). 341–347. https://doi.org/10.1109/TRO.2008.916997 )

( Citation: , & al., , & (). RoACH: An autonomous 2.4g crawling hexapod robot. IEEE. https://doi.org/10.1109/IROS.2008.4651149 )

2009-2010

( Citation: , & al., , & (). DASH: A dynamic 16g hexapedal robot. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2683–2689. https://doi.org/10.1109/IROS.2009.5354561 )

( Citation: , & al., , , & (). Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot. IEEE. https://doi.org/10.1109/BIOROB.2010.5626034 )

( Citation: , & al., , , , , , , & (). Programmable matter by folding. Proceedings of the National Academy of Sciences, 107(28). 12441–12445. https://doi.org/10.1073/pnas.0914069107 )

2011

( Citation: & , & (). Experimental dynamics of wing assisted running for a bipedal ornithopter. IEEE International Conference on Intelligent Robots and Systems. 5080–5086. https://doi.org/10.1109/IROS.2011.6048800 )

( Citation: , & al., , , & (). A wing-assisted running robot and implications for avian flight evolution. Bioinspiration and Biomimetics, 6(4). https://doi.org/10.1088/1748-3182/6/4/046008 )

( Citation: & , & (). Passive undulatory gaits enhance walking in a myriapod millirobot. IEEE. https://doi.org/10.1109/IROS.2011.6094700 )

2012

( Citation: , & al., , , & (). Monolithic fabrication of millimeter-scale machines. Journal of Micromechanics and Microengineering, 22(5). 55027. https://doi.org/10.1088/0960-1317/22/5/055027 )

2013

( Citation: & , & (). Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators. IEEE/ASME Transactions on Mechatronics, 18(2). 419–429. https://doi.org/10.1109/TMECH.2012.2211033 )

( Citation: , & al., , , & (). Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot. IEEE. https://doi.org/10.1109/ICRA.2013.6631034 )

( Citation: , & al., , , , & (). Deformable wheel robot based on origami structure. IEEE. https://doi.org/10.1109/ICRA.2013.6631383 )

( Citation: , & al., , , , & (). Design of Deformable-Wheeled Robot Based on Origami Structure with Shape Memory Alloy Coil Spring. )

( Citation: , & al., , , & (). Aerodynamic steering of a 10 cm high-speed running robot. IEEE. https://doi.org/10.1109/IROS.2013.6697167 )

( Citation: , & al., , , , , , & (). Self-folding with shape memory composites. Soft Matter, 9(32). 7688. https://doi.org/10.1039/c3sm51003d )

2014

( Citation: , & al., , , , & (). High speed locomotion for a quadrupedal microrobot. The International Journal of Robotics Research. https://doi.org/10.1177/0278364914521473 )

( Citation: , & al., , , , & (). A method for building self-folding machines. Science, 345(6197). 644–646. https://doi.org/10.1126/science.1252610 )

2015

( Citation: , & al., , , , & (). An Untethered Miniature Origami Robot that Self-folds , Walks , Swims , and Degrades. 1490–1496. https://doi.org/10.1109/ICRA.2015.7139386 )

( Citation: & , & (). Robogami: A Fully Integrated Low-Profile Robotic Origami. Journal of Mechanisms and Robotics, 7(2). 021009. https://doi.org/10.1115/1.4029491 )

2016

( Citation: , & al., , , , , , , , , & (). The Flying Monkey: A Mesoscale Robot That Can Run, Fly, And Grasp. IEEE. https://doi.org/10.1109/ICRA.2016.7487667 )

( Citation: , & al., , & (). Robotic folding of 2D and 3D structures from a ribbon. IEEE. https://doi.org/10.1109/ICRA.2016.7487550 )

2017

( Citation: , & al., , , & (). Rational design of reconfigurable prismatic architected materials. Nature, 541(7637). 347–352. https://doi.org/10.1038/nature20824 )

( Citation: , & al., , , , , , , , & (). Pop-up mars rover with textile-enhanced rigid-flex PCB body. IEEE. https://doi.org/10.1109/ICRA.2017.7989642 )

( Citation: , & al., , , & (). Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences, 114(50). 201713450. https://doi.org/10.1073/pnas.1713450114 )

( Citation: , & al., , & (). Tribot: A deployable, self-righting and multi-locomotive origami robot. IEEE. https://doi.org/10.1109/IROS.2017.8206445 )

( Citation: , & al., , , , , , , & (). Interactive robogami: An end-to-end system for design of robots with ground locomotion. The International Journal of Robotics Research. 1–17. https://doi.org/10.1177/0278364917723465 )

2018

( Citation: , & al., , , , & (). The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Science Robotics, 3(14). eaar3018. https://doi.org/10.1126/scirobotics.aar3018 )

Bibliography

Avadhanula & Fearing (2005)
& (). Flexure design rules for carbon fiber microrobotic mechanisms. IEEE. https://doi.org/10.1109/ROBOT.2005.1570339
Baisch, Ozcan, Goldberg, Ithier & Wood (2014)
, , , & (). High speed locomotion for a quadrupedal microrobot. The International Journal of Robotics Research. https://doi.org/10.1177/0278364914521473
Birkmeyer, Peterson & Fearing (2009)
, & (). DASH: A dynamic 16g hexapedal robot. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2683–2689. https://doi.org/10.1109/IROS.2009.5354561
Buchner (2004)
(). Kinematics of 3D Folding Structures for Nanostructured Origami. Retrieved from
Fearing, Chiang, Dickinson, Pick, Sitti & Yan (2000)
, , , , & (). Wing transmission for a micromechanical flying insect. IEEE. https://doi.org/10.1109/ROBOT.2000.844811
Felton, Tolley, Shin, Onal, Demaine, Rus & Wood (2013)
, , , , , & (). Self-folding with shape memory composites. Soft Matter, 9(32). 7688. https://doi.org/10.1039/c3sm51003d
Felton, Tolley, Demaine, Rus & Wood (2014)
, , , & (). A method for building self-folding machines. Science, 345(6197). 644–646. https://doi.org/10.1126/science.1252610
Firouzeh & Paik (2015)
& (). Robogami: A Fully Integrated Low-Profile Robotic Origami. Journal of Mechanisms and Robotics, 7(2). 021009. https://doi.org/10.1115/1.4029491
Haldane, Peterson, Garcia Bermudez & Fearing (2013)
, , & (). Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot. IEEE. https://doi.org/10.1109/ICRA.2013.6631034
Hawkes, An, Benbernou, Tanaka, Kim, Demaine, Rus & Wood (2010)
, , , , , , & (). Programmable matter by folding. Proceedings of the National Academy of Sciences, 107(28). 12441–12445. https://doi.org/10.1073/pnas.0914069107
Hoffman & Wood (2011)
& (). Passive undulatory gaits enhance walking in a myriapod millirobot. IEEE. https://doi.org/10.1109/IROS.2011.6094700
Hoover & Fearing (2008)
& (). Fast scale prototyping for folded millirobots. 2008 IEEE International Conference on Robotics and Automation. 1777–1778. https://doi.org/10.1109/ROBOT.2008.4543462
Hoover, Steltz & Fearing (2008)
, & (). RoACH: An autonomous 2.4g crawling hexapod robot. IEEE. https://doi.org/10.1109/IROS.2008.4651149
Hoover, Burden, Shankar Sastry & Fearing (2010)
, , & (). Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot. IEEE. https://doi.org/10.1109/BIOROB.2010.5626034
Karras, Fuller, Carpenter, Buscicchio, McKeeby, Norman, Parcheta, Davydychev & Fearing (2017)
, , , , , , , & (). Pop-up mars rover with textile-enhanced rigid-flex PCB body. IEEE. https://doi.org/10.1109/ICRA.2017.7989642
Koh & Cho (2013)
& (). Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators. IEEE/ASME Transactions on Mechatronics, 18(2). 419–429. https://doi.org/10.1109/TMECH.2012.2211033
Kohut, Zarrouk, Peterson & Fearing (2013)
, , & (). Aerodynamic steering of a 10 cm high-speed running robot. IEEE. https://doi.org/10.1109/IROS.2013.6697167
Lee, Kim, Kim, Park & Cho (2013)
, , , & (). Design of Deformable-Wheeled Robot Based on Origami Structure with Shape Memory Alloy Coil Spring.
Lee, Jung, Sin, Ahn & Cho (2013)
, , , & (). Deformable wheel robot based on origami structure. IEEE. https://doi.org/10.1109/ICRA.2013.6631383
Li, Vogt, Rus & Wood (2017)
, , & (). Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences, 114(50). 201713450. https://doi.org/10.1073/pnas.1713450114
McClintock, Temel, Doshi, Koh & Wood (2018)
, , , & (). The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Science Robotics, 3(14). eaar3018. https://doi.org/10.1126/scirobotics.aar3018
Miyashita, Guitron, Ludersdorfer, Sung & Rus (2015)
, , , & (). An Untethered Miniature Origami Robot that Self-folds , Walks , Swims , and Degrades. 1490–1496. https://doi.org/10.1109/ICRA.2015.7139386
Mulgaonkar, Araki, Koh, Guerrero-Bonilla, Aukes, Makineni, Tolley, Rus, Wood & Kumar (2016)
, , , , , , , , & (). The Flying Monkey: A Mesoscale Robot That Can Run, Fly, And Grasp. IEEE. https://doi.org/10.1109/ICRA.2016.7487667
Overvelde, Weaver, Hoberman & Bertoldi (2017)
, , & (). Rational design of reconfigurable prismatic architected materials. Nature, 541(7637). 347–352. https://doi.org/10.1038/nature20824
Peterson & Fearing (2011)
& (). Experimental dynamics of wing assisted running for a bipedal ornithopter. IEEE International Conference on Intelligent Robots and Systems. 5080–5086. https://doi.org/10.1109/IROS.2011.6048800
Peterson, Birkmeyer, Dudley & Fearing (2011)
, , & (). A wing-assisted running robot and implications for avian flight evolution. Bioinspiration and Biomimetics, 6(4). https://doi.org/10.1088/1748-3182/6/4/046008
Pister, Judy, Burgett & Fearing (1992)
, , & (). Microfabricated hinges. Sensors and Actuators A: Physical, 33(3). 249–256. https://doi.org/10.1016/0924-4247(92)80172-Y
Reid, Bright & Butler (1998)
, & (). Automated assembly of flip-up micromirrors. Sensors and Actuators A: Physical, 66(1-3). 292–298. https://doi.org/10.1016/S0924-4247(97)01719-6
Sahai, Lee & Fearing (2003)
, & (). Semi-automated micro assembly for rapid prototyping of a one DOF surgical wrist. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), 2(October). https://doi.org/10.1109/IROS.2003.1248918
Sahai, Avadhanula, Groff, Steltz, Wood & Fearing (2006)
, , , , & (). Towards a 3g crawling robot through the integration of microrobot technologies. Proceedings - IEEE International Conference on Robotics and Automation, 2006. 296–302. https://doi.org/10.1109/ROBOT.2006.1641727
Schulz, Sung, Spielberg, Zhao, Cheng, Grinspun, Rus & Matusik (2017)
, , , , , , & (). Interactive robogami: An end-to-end system for design of robots with ground locomotion. The International Journal of Robotics Research. 1–17. https://doi.org/10.1177/0278364917723465
Shimada, Thompson, Yan, Wood & Fearing (2000)
, , , & (). Prototyping millirobots using dextrous microassembly and folding. Symposium on Microrobotics ASME Int. Mechanical Engineering Cong. and Exp. 1–8.
Sreetharan, Whitney, Strauss & Wood (2012)
, , & (). Monolithic fabrication of millimeter-scale machines. Journal of Micromechanics and Microengineering, 22(5). 55027. https://doi.org/10.1088/0960-1317/22/5/055027
Wang, Plecnik & Fearing (2016)
, & (). Robotic folding of 2D and 3D structures from a ribbon. IEEE. https://doi.org/10.1109/ICRA.2016.7487550
Wood, Avadhanula, Menon & Fearing (2003)
, , & (). Microrobotics using composite materials: the micromechanical flying insect thorax. IEEE. https://doi.org/10.1109/ROBOT.2003.1241863
Wood, Steltz & Fearing (2005)
, & (). Optimal energy density piezoelectric bending actuators. Sensors and Actuators A: Physical, 119(2). 476–488. https://doi.org/10.1016/j.sna.2004.10.024
Wood (2008)
(). The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Transactions on Robotics, 24(2). 341–347. https://doi.org/10.1109/TRO.2008.916997
Yan, Wood, Avadhanula, Sitti & Fearing (2001)
, , , & (). Towards flapping wing control for a micromechanical flying insect. IEEE. https://doi.org/10.1109/ROBOT.2001.933225
Yeh, Kruglick & Pister (1995)
, & (). Microelectromechanical Components For Articulated Microrobots. IEEE. https://doi.org/10.1109/SENSOR.1995.721817
Zhakypov, Belke & Paik (2017)
, & (). Tribot: A deployable, self-righting and multi-locomotive origami robot. IEEE. https://doi.org/10.1109/IROS.2017.8206445